Sec 2 Math: Simultaneous Equations			F) Solving Single-line Simultaneous Equations Example (Intermediate)	H) Simultaneous on Figures (Example) (Intermediate)
 A) Simultaneous Equations We will be expected to find the values of x and y in a given pair of equations. There will be three main methods of solving the equations: Elimination Substitution Graphical Method 	C) Solving by Substitution (Basic) Solve the following pairs of simultaneous equations using the substitution method -2x + 9y = 8 4x + 7y = 9 Step 1: write and label the 2 equations: -2x + 9y = 8 Eqn 1	D) Solving Simultaneous Equations Example (Intermediate/Advanced) Solve the following pairs of simultaneous equations. $\frac{5}{x} - \frac{2}{y} = 16$ Eqn 1 $\frac{2}{x} + \frac{3}{y} = 14$ Eqn 2	Solve the following pairs of simultaneous equations $\frac{1}{2}(x + 3y) = 3(2y - 3x - 1) = x + y + 2$ Note: Firstly, break the equation into 2 $\frac{(x+3y)}{2} = 3(2y - 3x - 1) \text{Eqn 1}$ $3(2y - 3x - 1) = x + y + 2 \text{Eqn 2}$	$A \frac{(5x + y + 7) \text{ cm}}{D}$ $(2y + x) \text{ cm}$ $B \frac{(3y - x)}{2} \text{ cm}$ $ABCD \text{ is a rhombus.}$
B) Solving by Elimination (Basic) Solve the following pairs of simultaneous equations using the elimination method 2x - 3y = 18 3x + 2y = 1 Step 1: write and label the 2 equations: 2x - 3y = 18 Eqn 1 3x + 2y = 1 Eqn 2	$4x + 7y = 9 \qquad \text{ Eqn } 2$ Step 2: make one of the unknowns (x or y) the subject of one of the equations. From Eqn 1: $-2x + 9y = 8$ $2x = 9y - 8$ $x = \frac{9y-8}{2} \qquad \text{ Eqn } 3$ Step 3: Substitute Equation 3 into Equation 2	Note: For the above kind of question, it would be easier to solve by elimination (Eqn 1) × 2 - (Eqn 2) × 5: $\left(\frac{10}{x} - \frac{4}{y}\right) - \left(\frac{10}{x} + \frac{15}{y}\right) = 16 \times 2 - 14 \times 5$ $-\frac{19}{y} = -38$ 38y = 19 Cross-Multiply $y = \frac{19}{38} = 0.5$ Sub $y = 0.5$ into Eqn 1: $\frac{5}{x} - \frac{2}{0.5} = 16$	From Eqn 1: $\frac{(x+3y)}{2} = 3(2y - 3x - 1)$ (x + 3y) = 6(2y - 3x - 1) x + 3y = 12y - 18x - 6 9y - 19x - 6 = 0 Eqn 3 From Eqn 2: $3(2y - 3x - 1) = x + y + 2$ 6y - 9x - 3 = x + y + 2 5y - 10x - 5 = 0 y - 2x - 1 = 0 y = 2x + 1 Eqn 4	Since all sides of a rhombus are equal: 2y + x = 5x + y + 7 Eqn 1 $2y + x = \frac{3y - x}{2}$ Eqn 2 Solve using either substitution or elimination x = -1, y = 3
Step 2: multiply each equation until the coefficients of one of the unknowns (x or y) is the same: (Eqn 1) \times 3: $6x - 9y = 54$ Eqn 3 (Eqn 2) \times 2: $6x + 4y = 2$ Eqn 4	2. $4x + 7y = 9$ $4\left(\frac{9y-8}{2}\right) + 7y = 9$ $4(9y - 8) + 14y = 18$ $36y - 32 + 14y - 18 = 0$ $50y = 50$ $y = 1$	$\frac{5}{x} = 20$ $20x = 5$ $x = \frac{5}{20} = 0.25$ $x = 0.25, y = 0.5$ E) Simple word problem Example	Sub Eqn 4 into Eqn 3: 9(2x + 1) - 19x - 6 = 0 18x + 9 - 19x - 6 = 0 x = 3 Sub $x = 3$ into Eqn 4: y = 2(3) + 1 = 7 x = -7	I) ** Money Example (Intermediate) Sandra paid for a dress that costs \$125 using five-dollar and ten-dollar notes. She used 16 notes altogether. Using algebraic method, find the number of five-dollar notes she used.
Step 3: Eliminate x by subtracting one Eqn by another: (Eqn 3) – (Eqn 4): (6x - 9y) - (6x + 4y) = 54 - 2 -13y = 52 $y = \frac{52}{-13} = -4$ Step 4: Find the other unknown by substituting the first answer into any of the equations:	Step 4: Find the other unknown by substituting first answer into any of the equations: Sub $y = 1$ into Eqn 3: $x = \frac{9(1)-8}{2}$ x = 0.5 $\therefore x = 0.5, y = 1$	(BaSIC) Mr McDonald has some chickens and cows in his farm. If he counted a total of 94 legs and 30 heads, find the number of chickens and the number of cows in his farm. Let the number of chickens be x and the number of cows be y. Chickens have 2 legs and cows have 4 2x + 4y = 94 Fon 1	G) Given Solutions find Unknowns (Example) (Intermediate) If $x = 3$ and $y = -1$ are the solutions to the simultaneous equations: ax - by = 11 3x + by = 5a Find the values of a and b. Since $x = 3$ and $y = -1$ are the solutions, cubritive the values into the equations:	Let the number of five-dollar notes be <i>x</i> . Let the number of ten-dollar notes be <i>y</i> . Form equation using " number of notes": x + y = 16Eqn 1 Form equation using " total value of money" 5x + 10y = 125 Eqn 2
Sub $y = -4$ into Eqn 1: 2x - 3(-4) = 18 2x = 6 x = 3 $\therefore x = 3, y = -4$	XMATH ITION	$2x + 4y = 94 \qquad Eqn 1$ Each chicken and each cow has 1 head. $x + y = 30 \qquad Eqn 2$ Solve Eqn 1 and Eqn 2 using either substitution of elimination x = 13, y = 17 There are 13 chickens and 17 cows.	substitute the values into the equations: a(3) - b(-1) = 11 Eqn 1 3(3) + b(-1) = 5a Eqn 2 From Eqn 1: 3a + b = 11 b = 11 - 3a Eqn 3 Sub Eqn 3 into Eqn 2: 3(3) + (11 - 3a)(-1) = 5a 9 - 11 + 3a - 5a = 0	Solve Eqn 1 and Eqn 2 using either substitution of elimination x = 7, y = 9 There are 7 five-dollar notes. <u>*Note: Make sure to understand the difference</u> <u>between "number of notes" and "total value of</u> <u>money"</u>
Unauthorized copying, resale a	nd distribution prohibited. Copyright © <u>www.tt</u>	a = -1 Sub $a = -1$ in Eqn 3: b = 11 - 3(-1) b = 14 $\therefore a = -1, b = 14$		

I) Bure Digit Number (Freemple 1)	D) falving by Flimingtian (Basia)		
J) TWO-DIGIT NUMBER (EXample 1)	B) Solving by Elimination (Basic)		
(*Advanced, **important)	Solve the following pairs of simultaneous equations using the elimination method		
A two digit number is 4 times the sum of	2x - 3y = 18		
its digits. If the digits are reversed, the	3x + 2y = 1		
number will be increased by 27.	C) Solving by Substitution (Rasic)		
Find the number.	Solve the following pairs of simultaneous equations using the substitution method		
	-2r + 9y - 8		
Let the tens digit of the original number be	2x + 5y = 0 $4x + 7y = 9$		
x and the ones digit be y .			
\therefore the original number is $10x + y$.	D) Solving Simultaneous Equations Example (Intermediate/Advanced)		
Key note: Please note that the two digit	Solve the following pairs of simultaneous equations.		
number is $10x + y$, NOT $xy!!$	$\frac{5}{2} - \frac{2}{2} = 16$ Fan 1		
10x + y = 4(x + y) Eqn 1	$\frac{2}{x} + \frac{3}{y} = 14$ Eqn 2		
(10y + x) = (10x + y) + 27 Eqn 2			
Freedories (16) and for the theory	E) Simple word problem Example (Basic)		
Expand, simplify and Solve simultaneous:	Mr McDonald has some chickens and cows in his farm. If he counted a total of 94 legs and 30 heads, find the number of chickens and the number of cows in his farm.		
x = 3 and $y = 6$			
Therefore, the number is <u>36</u>	F) Solving Single-line Simultaneous Equations Example (Intermediate)		
	Solve the following pairs of simultaneous equations		
	$\int_{-\frac{1}{2}} \frac{1}{2}(x+3y) = 3(2y-3x-1) = x+y+2$		
K) Two-Digit Number (Example 2)			
(*Advanced, **Challenging)	G) Given Solutions find Unknowns (Example) (Intermediate)		
A two digit number is such that the sum of	If $x = 3$ and $y = -1$ are the solutions to the simultaneous equations:		
its digits is one seventh of the number If	ax - by = 11		
the digits are reversed the number will be	3x + by = 5a		
decreased by 36 What is the number?	Find the values of a and b.		
	H) Simultaneous en Figures (Evample) (Intermediate)		
Let the tens digit of the original number be	n) Siniurancous on Figures (Example) (incerineurace)		
x and the ones digit be y .	Eind the values of x and y $A \frac{(5x+y+7) \text{ cm}}{\sqrt{2}} D$		
$x + y = \frac{1}{2}(10x + y)$ Eqn 1	Find the values of x and y.		
$(10x + x) = \frac{10x + y}{7} = \frac{26}{7}$	$(2y + x) \operatorname{cm}$		
(10x + y) - (10y + x) = 30 Eqfi 2			
From Forn 1:	$\frac{B}{(3y-x)_{em}}c$		
From Eqn 1: $(10x+y)$	$\frac{1}{2}$		
$x + y = \frac{1}{7}$	A DCD is a shorthus		
7x + 7y = 10x + y	ABCD is a momous.		
$-3x + 6y = 0 \qquad \qquad \text{ Eqn 3}$	I) Manay Evample (Intermediate ##Impartant)		
From Eqn 2:	1) Honey Example (linke internates, **important)		
10x + y - 10y - x = 36	Sandra paid for a dress that costs \$125 using live-dollar notes. She used 16 notes altogether. Using algebraic method, find the number of live-dollar notes she		
$9x - 9y = 36 \qquad \qquad \text{ Eqn 4}$	used.		
Solve For 2 and For 4 using either	J) Two-Digit Number (Example 1) (*Advanced, **Important)		
substitution of climination	A two digit number is 4 times the sum of its digits. If the digits are reversed, the number will be increased by 27. Find the number using an algebraic method.		
substitution of elimination $\alpha = 0$ $\alpha = 4$			
x = 0, y = 4			
	K) Two-Digit Number (Example) (*Advanced, **Challenging)		
	A two digit number is such that the sum of its digits is one-seventh of the number. If the digits are reversed, the number will be decreased by 36. What is the number?		