(6) Binomial Theorem

- 1. The *x*-independent term in the expansion of $(3 ax)^{2n+1}$ is 81 times the *x*-independent term in the expansion of $(3 + x)^n$. Find *n*.
- 2. In the expansion of $\left(ax + \frac{b}{3x}\right)^n$, the fifth term is 1120 and the coefficient of the x^2 term is 1792, where a, b and n are positive constants.
 - a. Write down the value of n
 - b. Find the values of a and b
- 3. Expand, in ascending power of x, up to the x^2 term for the following binomials: a. $(5 + x)^5$
 - b. $\left(2-\frac{x}{5}\right)^5$
- 4. Expand $(1 + 2x 2x^2)^8$ in ascending powers of x up until the x^3 term. Using a suitable numerical value of x, find an approximate value of 1.001998⁸, giving your answer correct to 4 significant figures.
- 5. In the binomial expansion of $(3 + x)^n$, where *n* is a positive integer, the coefficients of x^3 and x^4 are in the ratio $\frac{3}{2}$. Find the value of *n*.
- 6. The first four terms in the expansion of $(1 + ax)^n$ is $1 + 18x + 15a^2x^2 + bx^3 + \cdots$ Find the value of n, a and b.
- 7. In the expansion of $(2 + 5x)^n$, the first three terms in ascending power of x are denoted by a, b and c respectively. Given that $\frac{ac}{b^2} = \frac{3}{7}$, find the value of n.
- 8. i) Find the value of q if the coefficient of x in the expansion of $(1 + 2x)^5 (1 \frac{1}{3}x)^6 (1 + x)^9 (1 + qx)^4$ is zero. ii) State the term independent of x in the above equation.
- 9. In the expansion of $\left(\frac{x}{3} + \frac{3}{x}\right)^n$ in descending powers of x, the ratio of the coefficient of the third term to that of the fourth term is $\frac{1}{15}$. Find the value of n.
- 10. Given the expression $\left(\frac{2x\sqrt{x}-1}{2\sqrt{x}}\right)^n$ where the 11th term of the expansion, in descending powers of x is independent of x. Find the value of this term.