(1) Simultaneous, Quadrilaterals and Inequalities

1. Find the value(s) of k for the following simultaneous equations, given that the equations have no solution.

$$(k+1)y = (2k-1)x + 5$$
 ---(1)

$$4y = (k+2)x + 10 ---(2)$$

- 2. The equation $2x^2 + 8x = 1$ has roots α and β .
 - a) State the value of $\alpha + \beta$ and $\alpha\beta$
 - b) Find the value of $\alpha^2 \beta^2$, leaving your answer in surd form.
 - c) Find the quadratic equation whose roots are $\alpha^4 \beta^4$
- 3. It is given that α and β are the roots of the equation $y=x^2-x-1$, where $\beta>\alpha$ and that $\alpha + \frac{1}{\alpha}$ and $\beta + \frac{1}{\beta}$ are the roots of another quadratic equation with integer coefficients. Without solving the values of α and β , find the exact value of $\alpha + \frac{1}{\alpha}$.
- 4. a) If one root of the equation $4x^2 22x + k = 0$ is ten times the other, find the value of k. b) Show that $2 - x^2 + 3x$ can never be greater than 5.
- 5. Show that the roots of the equation $x^2 + (2 k)x = \frac{3}{2}k$ are real for all real values of k.
- 6. The roots of the equation $x^2 4x + k$ differs by 2s. Show that $s^2 = 4 k$. Given also that the roots are positive integers and that k is a positive integer, find the possible values of s.
- 7. Given that α and β are the roots of the equation $x^2 = x 5$, prove that

a)
$$\frac{1-\alpha}{5} = \frac{1}{\alpha}$$

a)
$$\frac{1-\alpha}{5} = \frac{1}{\alpha}$$

b) $\alpha^3 + 4\alpha + 5 = 0$

- 8. a) Find the range of values of x for which $2x^2 + x 6$ lies between -3 and 4.
 - b) Show that if the roots of the equation $2x^2 + 3x 2 + m(x 1)^2 = 0$ are real, then m cannot be greater than $\frac{25}{13}$.
- 9. Find the range of values of k for which the graph of $y = kx^2 3x + kx$ lies entirely above the line v = 4.
- 10. i) Show that the expression $x^2 x + \frac{7}{2}$ is always positive for all real values of x.
 - ii) Hence, find the values of k which satisfy the inequality $\frac{-x^2+kx+2}{-(x^2-x+3.5)} < 2$ for all real values of x.
- 11. The roots of the equation $2x^2 8x + 50 = 0$ are α^2 and β^2 . Find
 - i) the value of $\alpha^2 + \beta^2$ and $\alpha^2 \beta^2$.
 - ii) two different quadratic equations whose roots are α and β