(7) Coordinate Geometry

1. The diagram shows a trapezium $A B C D$ such that $B C$ is parallel to $A D$ and perpendicular to $C D$.
i) Find the coordinates of vertex D
ii) Point E lies on $B C$ such that the area of triangle $A C E$ is $\frac{1}{2}$ of the area of triangle $A B E$. Find the coordinates of E.
iii) Point F lies on $A D$ produce such that it forms a parallelogram with vertices A, B and C. Find the possible coordinates of F.
iv) Determine the ratio of the area of triangle ACB to the parallelogram AFBC.

2. Point A has coordinates $(2,3)$ and line l_{1} has equation $2 y=4 x+5$.
a) Find the coordinates of the foot of the perpendicular from Point A to line l_{1}.
b) Find the shortest distance from Point A to line l_{1}
c) Point B is the reflection of Point A on the line l_{1}, find the coordinates of B .
3. The equation of the perpendicular bisector of the line segment which joins $A(2,3)$ and $B(h, k)$ is $y=x-1$. Find the value of h and of k.
4. The diagram shows 3 vertices of a parallelogram. Given $\mathrm{A}(1,2), \mathrm{B}(3,0)$ and O , find the possible positions of the fourth vertex.

5. The diagram above (not drawn to scale) shows kite $A B C D$ with $D C$ parallel to the x-axis. The area of triangle ADC is 3 times that of triangle ABC . Given that $C(7,-2)$ and the equation of the diagonal BD is $2 y=x$, find
i) Coordinates of D
ii) Coordinates of E
iii) Coordinates of A
iv) Coordinates of B

6. Three points $A, \mathrm{~B}$ and C lies on a straight line such that $A B=2 B C$. The coordinates of point B is $(4,-2)$ and $\tan \theta=\frac{2}{3}$. Find the
i) equation of line $A C$
ii) coordinates of A and C
iii) coordinates of the point on line $A C$ that is closest to O.
(Leave you answer to the nearest 3 s.f.)

7. The diagram shows a trapezium $O A B C$. The equation of $O A$ is $y=x$ and the equation of $O C$ is $2 y+x=0$. Line $O A$ is parallel to $C B$ and perpendicular to $A B$. Point B is on the x-axis. The length of $O A$ is $4 \sqrt{2}$ units.
i) Find the coordinates of A
ii) Find the coordinates of B
iii) Find the coordinates of C.
iv) Hence, calculate the area of trapezium $O A B C$.

8. $A B C D$ is a trapezium with $A B$ parallel to $B C$. The equation of $D C$ is $6 y=11 x-41$. Given that midpoint of $A D$ lies on the y-axis and the midpoint of $B D$ lies on the x-axis, find i) the coordinates of D
ii) the coordinates of C
iii) area of $A B C D$
iv) the perpendicular distance between $A D$ and $B C$ (leaving your answer to 3 s.f.)

9. In the diagram, ABCD is a rectangle. The coordinates of A are $(-1,2)$ and the equation of BC is $3 y+x=25$. Given that the area of ABCD is 80 units 2, find the coordinates of B, C and D .

10. The diagram shows a rhombus $A B C D$. Two of the points are $A(1,-1)$ and $C(7,5)$. Point D lies on the y-axis.
i) Find the coordinates of D
ii) Find the coordinates of B
iii) Find the area of rhombus $A B C D$
iv) Calculate the perpendicular distance from C to $\mathrm{AB} . D$

