Sec 2 Math: Quadratic EquationsA) Quadratic EquationsAn equation in the form $ax^2 + bx + c$, is known as a quadratic equation.The constants a and b are known as the coefficient of x^2 and x respectively and c is known as the constant term.B) Solving Quadratic Equations (Basic)		E) Given Solution, find Equation (Intermediate) If $x = 3$ is a solution of the equation $2x^2 + kx - 15 = 0$, find a) the value of k , b) the other solution of the equation. a) Sub $x = 3$ into the equation: $2(3)^2 + k(3) - 15 = 0$ 3 + 3k = 0 k = -1 b) Sub $k = -1$ into initial equation: $2x^2 + (-1)x - 15 = 0$	G) Solving Equations (Intermediate) Given that $25x^2 - 10xy + y^2 = 0$, find the value of $\frac{10x}{y}$ $25x^2 - 10xy + y^2 = 0$ $(5x - y)^2 = 0$ 5x - y = 0 5x = y $\frac{5x}{y} = 1$ $\frac{x}{y} = \frac{1}{5}$	
Solve each of the following equations. a) $5x^2 - 13x + 6 = 0$ b) $3x^2 = 6x$ c) $4x^2 = 25$	you still need to show presentation! For other calculators, please ask your tutor/teacher.	2x + (-1)x - 13 = 0 (2x + 5)(x - 3) = 0 2x + 5 = 0 or $x - 3 = 0$ x = -2.5 or $x = 3$ (Not applicable)	$\therefore \frac{10x}{y} = 10 \times \frac{1}{5}$ $= 2$	
d) $2x(x-5) = 12$ a) $5x^2 - 13x + 6 = 0$ (x-2)(5x-3) = 0 x-2 = 0 or $5x-3 = 0x = 2 or x = \frac{3}{5}$	D) Common Errors (Refer to previous box for the correct method.) Solve each of the following equations. a) $3x^2 = 6x$ b) $4x^2 = 25$ c) $2x(x-5) = 12$	F) "Hence, Solve" Questions (Intermediate) a) Factorize $3n^2 - 13n - 10$ b) Hence, solve i) $3(x + 1)^2 - 13(x + 1) - 10 = 0$ ii) $3(2y)^2 - 13(2y) = 10$	 H) Word Problem (Intermediate) Panial walks for 2x hours at a speed of (x - 4) km/h and cycles for (2x - 1) hours at a speed of (x + 5) km/h. a) Express the distance Danial has walked in terms of x 	
b) $3x^2 = 6x$ $3x^2 - 6x = 0$ 3x(x - 2) = 0 3x = 0 or $x - 2 = 0x = 0$ or $x = 2c) 4x^2 = 25$	a) $3x^2 = 6x$ 3x = 6 (Cancel x from both sides) *Common Error: The above step is WRONG! When we cancel x from both sides, we cancelled away one possible answer. We should factorize x out	a) $3n^2 - 13n - 10$ = $(n - 5)(3n + 2)$ *Factorize using cross box or multiplication frame bi) Substitute $n = x + 1$ into above expression: $3(x + 1)^2 - 13(x + 1) - 10 = 0$ ((x + 1) - 5)(3(x + 1) + 2) = 0	 b) Express the distance Danial has cycled in terms of x. c) The total distance is 90 km. Form an equation in x and show that 4x² + x - 95 = 0 d) Hence, find the time taken by Danial for walking. 	
$x^{2} = \frac{25}{4}$ $x = \pm \sqrt{\frac{25}{4}}$ (*Note: Remember to put ± whenever we square root both sides of an equation) $x = \pm \frac{5}{2}$	instead!!! b) $4x^2 = 25$ $x^2 = \frac{25}{4}$ $x = \sqrt{\frac{25}{4}}$ x = 2.5	(x-4)(3x+5) = 0 x-4 = 0 or 3x+5 = 0 $x = 4 or x = -\frac{5}{3}$ bi) Substitute $n = 2y$ into above expression: $3(2y)^2 - 13(2y) = 10$ $3(2y)^2 - 13(2y) - 10 = 0$	a) $2x \times (x - 4)$ = $2x^2 - 8x$ km b) $(2x - 1)(x + 5)$ = $2x^2 + 9x - 5$ km	
$x = 2.5 \qquad \text{or} \qquad x = -2.5$ $x = -2.5$	*Common Error: The above step is WRONG! Don't forget to put "±"whenever we square root both sides of an equation!!!	S(2y) - 1S(2y) - 10 = 0 ((2y) - 5)(3(2y) + 2) = 0 (2y - 5)(6y + 2) = 0 2y - 5 = 0 or 6y + 2 = 0 $y = \frac{5}{2} or y = -\frac{1}{3}$	c) $(2x^2 - 8x) + (2x^2 + 9x - 5) = 90$ $4x^2 + x - 5 = 90$ $4x^2 + x - 95 = 0$ d) $4x^2 + x - 95 = 0$	
all the terms to one side and ensure the otherside is 0) $2(x-6)(x+1) = 0$ $x-6=0$ or $x+1=0$ $x=6$ or $x=-1$	c) $2x(x-5) = 12$ 2x = 12 or $x-5 = 12*Common Error: The above step isWRONG! Only when equals 0, then we cansplit it up using "zero product rule"!!!$	*Note: Part (b) is a "hence" question, therefore we are obliged to make use of part (a) answer to solve the guestion. The key is to identify the "substitution" involved and make use of it properly.	(4x - 19)(x + 5) = 0 4x - 19 = 0 or $x + 5 = 0x = \frac{19}{4} or x = -5e) x = \frac{19}{4} since time has to be a positive value,Danial walked for 2\left(\frac{19}{4}\right) = 9.5 hours$	

Unauthorized copying, resale and distribution prohibited. Copyright © www.tuitionmath.com. All rights reserved

Augdretic Equation + Alashuais Exactions

1) Quadratic Equations involving Algebraic Fractions Solve each of the following equations. a) $\frac{3p}{2+p^2} = \frac{1}{3-2p}$ b) $\frac{x-3}{2} - \frac{4}{x+4} = 0$ c) $\frac{8}{x} - \frac{5}{x+1} = 1$ d) $4 - 4x + \frac{3}{x} = 0$ a) $\frac{3p}{2+p^2} = \frac{1}{3-2p}$ $3p(3-2p) = 1(2+p^2)$ (Cross multiply) $9p - 6p^2 = 2 + p^2$ $7p^2 - 9p + 2 = 0$ (7p - 2)(p - 1) = 0 7p - 2 = 0 or $p - 1 = 0p = \frac{2}{7} or p = 1b) \frac{x-3}{2} - \frac{4}{x+4} = 0\frac{x-3}{2} = \frac{4}{x+4}(x - 3)(x + 4) = 8x^2 + x - 20 = 0(x + 5)(x - 4) = 0x + 5 = 0$ or $x - 4 = 0x + 5 = 0$ or $x - 4 = 0x = -5$ or $x = 4c) \frac{8}{x} - \frac{5}{x+1} = 1\frac{8(x+1)-5(x)}{x(x+1)} = 1(*Note: Combine fractions by making same denominator)8(x + 1) - 5(x) = x(x + 1)8x + 8 - 5x = x^2 + xx^2 - 2x - 8 = 0(x - 4)(x + 2) = 0x = 4$ or $x = -2d) 4 - 4x + \frac{3}{x} = 0\frac{4x - 4x^2 + 3}{x} = \frac{0}{1}4x - 4x^2 + 3 = 0(x) (Cross Multiply)$	+ Algebraic Fractions i) Word Problems (Speed-Time-Distance) In Tay makes regular business trips to Malacca which is 240 km from Singapore. (a) On the journey to Malacca, he travels at an average speed of x km/h. Write down an expression in x for the time taken in hours to travel from Singapore, he increases his speed by 10 km/h. Write down an expression in terms of x for the time taken in hours to travel from Malacca to Singapore. (b) On his return journey to Singapore, he increases his speed by 10 km/h. Write down an expression in terms of x for the time taken in hours to travel from Malacca to Singapore. (c) If the difference between the two journeys is 20 minutes, form an equation in x and show that it reduces to $x^2 + 10x - 7200 = 0$. (d) Solve the equation $x^2 + 10x - 7200 = 0$. (e) Find the total time taken for the trip from Singapore to Malacca. a) Time taken to travel from Malacca to SG $= \frac{240}{x+10}h$ c) $\frac{240}{x} - \frac{240}{x+10} = \frac{20}{60}$ (*Note: It is $\frac{20}{60}$ not 20 because in hours) $\frac{240x(x+10)-240(x)}{x^2+10x} = \frac{1}{3}$ $\frac{240x+2400-240x}{x^2+10x} = \frac{1}{3}$ $\frac{240x+2400-240x}{x^2+10x} = \frac{1}{3}$ $\frac{3}{3}(2400) = x^2 + 10x$ $x^2 + 10x - 7200 = 0$ (shown) d) $x^2 + 10x - 7200 = 0$ ($x - 80$) ($x + 90$) = 0 x = 80 or $x = -90[*Note: We do not reject -90 in this part because the quastion in this part plainly asks us to solve the equation and it is not with respect to the scenario]e) x = 80(x = -90 is rejected since speed must be positive)$	K) Word Problems (Pipe Rate) An aquarium tank can be filled by two taps A and B in 4 hours. Tap A can fill up the tank in x hours while Tap B takes $(3x - 6)$ hours to fill. (a) Find the fraction of the tank that can be filled up in 1 hour by (i) Tap A (ii) Tap B (b) Form an equation in x and show that it reduces to $3x^2 - 22x + 24 = 0$. (c) Solve the equation $3x^2 - 22x + 24 = 0$. (d) Explain why one of the solutions in (c) is not applicable. ai) Tap A in 1 hour = $\frac{1}{x}$ of tank aii) Tap B in 1 hour = $\frac{1}{3x-6}$ of tank b) Together, $\frac{1}{4}$ of tank will be filled in 1 hour. $\frac{1}{x} + \frac{1}{3x-6} = \frac{1}{4}$ $\frac{(3x-6)+x}{3x^2-6x} = \frac{1}{4}$ $16x - 24 = 3x^2 - 6x$ $3x^2 - 22x + 24 = 0$ (shown) c) $(3x - 4)(x - 6) = 0$ 3x - 4 = 0 or $x - 6 = 0x = \frac{4}{3} or x = 6d) x = \frac{4}{3} is not applicable because x has to be greaterthan 4 hours. Tap A and Tap B are filling together.$	L) Word Problems (\$/Profit) Mrs Ong bought a crate of mangoes for \$300. She paid \$x for each mango. (a) Write down an expression for the number of mangoes she bought. (b) As 10 of the mangoes were rotten, she decided to sell each of the remaining mangoes at a profit of \$0.50. Write down an expression in terms of x for the sum of money she would receive if all the remaining mangoes were sold. (c) From the sale of all the remaining mangoes, Mrs Ong made a profit of \$30. Write down an equation in x to represent this information, and show that it reduces to $2x^2 + 7x - 30 = 0$. (d) Solve the equation and find the cost price of each mango. a) Number of mangoes bought = $\frac{300}{x}$ b) Remaining mangoes = $\frac{300}{x} - 10$ Money made= $(x + 0.5)(\frac{300}{x} - 10)$ = $300 - 10x + \frac{150}{x} - 5$ = $295 - 10x + \frac{150}{x}$ c) $(295 - 10x + \frac{150}{x}) = 300 + 30$ $-35x - 10x^2 + 150 = 0$ $10x^2 + 35x - 150 = 0$ $2x^2 + 7x - 30 = 0$ (shown) d) $2x^2 + 7x - 30 = 0$ ($2x - 5$) $(x + 6) = 0$ $x = \frac{5}{x}$ or $x = -6$ (rejected since $x > 0$) Cost price of each mango = \$2.50
$\frac{4x-4x^2+3}{x} = \frac{0}{1}$			

Unauthorized copying, resale and distribution prohibited. Copyright © www.tuitionmath.com. All rights reserved

Self Practice

Self Practice		
	APEXMATH	
B) Solving Quadratic Equations (Basic)	TUITION	J) Word Problem (Speed-Time-Distance)
Solve each of the following equations.	Mr Tay makes regular business trips to Malacca which is 240 km from Singapore.	
a) $5x^2 - 13x + 6 = 0$		
b) $3x^2 = 6x$		(a) On the journey to Malacca, he travels at an average speed of x km/h. Write down an expression
c) $4x^2 = 25$		in x for the time taken in hours to travel from Singapore to Malacca.
d) $2x(x-5) = 12$		(h) On his seture issues to Singeneral he insueses his speed hu 10 km/h. Write down on
		(b) On his return journey to Singapore, he increases his speed by 10 km/h. Write down an expression in terms of x for the time taken in hours to travel from Malacca to Singapore.
E) Given Solution, find Equation (Intermediate)		
If $x = 3$ is a solution of the equation	(c) If the difference between the two journeys is 20 minutes, form an equation in x and show that it	
$2x^2 + kx - 15 = 0$, find		reduces to $x^2 + 10x - 7200 = 0$.
a) the value of <i>k,</i> b) the other solution of the equation.		(d) Solve the equation $x^2 + 10x = 7200 = 0$
		(d) Solve the equation $x^2 + 10x - 7200 = 0$.
		(e) Find the total time taken for the trip from Singapore to Malacca.
F) "Hence, Solve" Questions (Intermediate)		K) Word Problem (Pipe Rate)
a) Factorize $3n^2 - 13n - 10$		An aquarium tank can be filled by two taps A and B in 3 hours. Tap A can fill up the tank in x hours
b) Hence, solve $12 (1 + 1)^2 = 12 (1 + 1)^2 = 12 (1 + 1)^2$		while Tap B takes $(2x + 3)$ hours to fill.
i) $3(x+1)^2 - 13(x+1) - 10 = 0$		
ii) $3(2y)^2 - 13(2y) = 10$		(a) Find the fraction of the tank that can be filled up in 1 hour by
		(i) Tap A
G) Solving Equations (Intermediate)		(ii) Tap B
Given that $25x^2 - 10xy + y^2 = 0$, find the value of $\frac{10x}{y}$		
у		(b) Form an equation in x and show that it reduces to $2x^2 - 6x - 9 = 0$.
H) Word Problem (Intermediate)		(c) Solve the equation $2x^2 - 6x - 9 = 0$, giving your answers correct to two decimal places.
Danial walks for $2x$ hours at a speed of		(d) Explain why one of the solutions in (c) is rejected.
(x - 4) km/h and cycles for $(2x - 1)$ hours at a speed of $(x + 5)$ km/h.		
a) Express the distance Danial has walked in terms of xb) Express the distance Danial has cycled in terms of x.	(e) If Tap B alone is used, find the amount of extra time taken, to the nearest minute, for it to fill the	
c) The total distance is 90 km. Form an equation in x and show that $4x^2 + x - 95 =$	= 0	tank.
d) Hence, find the time taken by Danial for walking.	0	L) Word Problem (\$ and Profit)
		Mrs Ong bought a crate of mangoes for \$300. She paid \$x for each mango.
		(a) Write down an expression for the number of mangoes she bought.
I) Quadratic Equations involving Algebraic Fractions	$(b) \Lambda c = 10$ of the managers were rotten the decided to call each of the remaining managers at a matrix	
Solve each of the following equations.		(b) As 10 of the mangoes were rotten, she decided to sell each of the remaining mangoes at a profit of \$0.50. Write down an expression in terms of <i>x</i> for the sum of money she would receive if all the
a) $\frac{3p}{2+p^2} = \frac{1}{3-2p}$		remaining mangoes were sold.
b) $\frac{x-3}{2} - \frac{4}{x+4} = 0$ c) $\frac{8}{x} - \frac{5}{x+1} = 1$		
$r^{2} = \frac{x_{+4}}{x_{-1}}$		(c) From the sale of all the remaining mangoes, Mrs Ong made a profit of \$30. Write down an
$(y_{x})_{x+1}$		equation in x to represent this information, and show that it reduces to $2x^2 + 7x - 30 = 0$.
d) $4 - 4x + \frac{3}{x} = 0$		(d) Solve the equation and find the cost price of each mango.