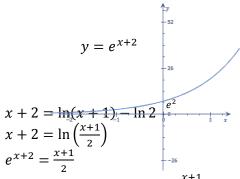
Modulus and Graph of Logarithms/Exponentials Functions

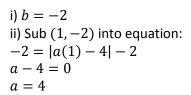
Sketch the graph $y=e^{x+2}$. State the equation of a straight line that can be drawn to solve the equation $x+2=\ln(x+1)-\ln 2$.

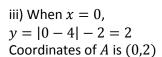


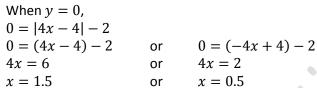
A suitable straight line is $y = \frac{x+1}{2}$

The figure shows part of the graph of y = |ax - 4| + b where C(1, -2) is the minimum point of the graph.

- i) State the value of b
- ii) Find the value of a
- iii) Find the coordinates of A, B and D.
- iv) Write down the range of values of x for which y is negative.

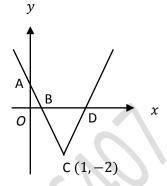






Coordinates of B is (0.5,0) and Coordinates of D is (1.5,0)

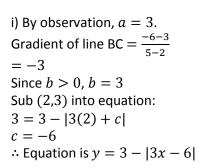
iv) 0.5 < x < 1.5

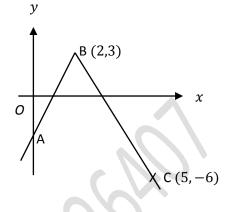


The diagram show part of the graph of y = a - |bx + c| where b > 0. Given that it passes through the points B(2,3) and C(5,-6),

i) Find the values of a, b and c

ii) Find the *x*-intercepts and the *y*-intercept of the graph.





ii) When
$$x = 0$$
,
 $y = 3 - |0 - 6| = -3$
y-intercept is $(0, -3)$

When
$$y = 0$$
, $0 = 3 - |3x - 6|$ $3x - 6 = 3$ or $3x - 6 = -3$ $x = 3$ or $x = 1$ x -intercepts are $(1,0)$ and $(3,0)$.

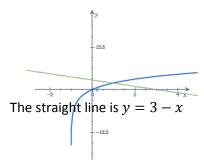
Sketch the graph $y=3\ln(x+1)$. On the same graph, add a suitable straight line which will help solve the equation $(x+1)e^{\frac{1}{3}x+1}=e^2$. State the equation of the straight line.

$$(x+1)e^{\frac{1}{3}x+1} = e^2$$

$$(x+1) = e^{1-\frac{1}{3}x}$$

$$\ln(x+1) = 1 - \frac{1}{3}x$$

$$3\ln(x+1) = 3 - x$$



5 Solve the equation |-3x + 21| = 8x + |x - 7|

$$|-3x + 21| = 8x + |x - 7|$$

$$|-3(x - 7)| = 8x + |x - 7|$$

$$|-3||x - 7| - |x - 7| = 8x$$

$$|x - 7|(3 - 1) = 8x$$

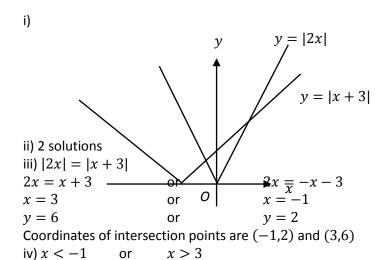
$$x - 7 = 4x \quad \text{or} \quad x - 7 = -4x$$

$$x = -\frac{7}{3} \quad \text{or} \quad x = \frac{7}{5}$$

Check by Substitution:

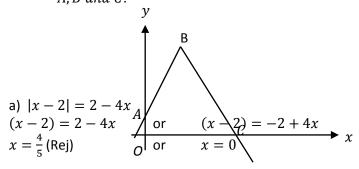
$$x = -\frac{7}{3}$$
 or $x = \frac{7}{5}$
 $LHS = \left| -3(-\frac{7}{3}) + 21 \right| = 28$ or $LHS = \left| -3(\frac{7}{5}) + 21 \right| = \frac{84}{5}$
 $RHS = 8\left(-\frac{7}{3}\right) + \left| \left(-\frac{7}{3}\right) - 7 \right| = -\frac{28}{3}$ or $RHS = 8\left(\frac{7}{5}\right) + \left| \left(\frac{7}{5}\right) - 7 \right| = \frac{84}{5}$
 $LHS \neq RHS, \therefore x = -\frac{7}{3} \text{ is rejected}$ $LHS = RHS, \therefore x = \frac{84}{5}$

- 6 i) On the same diagram, sketch the graphs of y = |2x| and y = |x + 3|.
- ii) State the number of solutions of the equation for |2x| = |x + 3|.
- iii) Find the coordinates of the intersection points of the 2 graphs.
- iv) Hence, state the solution of |2x| > |x + 3|.



7 a) Solve the equation |x-2| = 2-4x

b) The diagram shows part of the graph of y=4-|2x-3|. Find the coordinates of A, B and C.



Substitute $x = \frac{4}{5}$ back into equation:

$$\left| \frac{4}{5} - 2 \right| = 2 - 4 \left(\frac{4}{5} \right)$$
 $\frac{6}{5} \neq -\frac{6}{5}$

 $\therefore x = \frac{5}{4} \text{ is rejected}$

Substitute x = 0 back into equation:

$$|0-2|=2-4(0)$$

$$2 = 2$$

$$\therefore x = 0$$

b) When
$$x = 0$$
,

$$y = 4 - |2(0) - 3|$$

$$= 1$$

When
$$y = 0$$
,

$$0 = 4 - |2x - 3|$$

$$2x - 3 = 4$$

$$2x - 3 =$$

$$x = 3.5$$

 $\therefore C(3.5, 0)$

y-coordinate of B=4

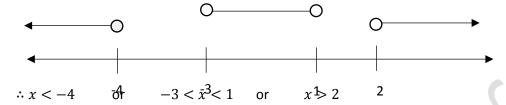
When y = 4,

$$4 = 4 - |2x - 3|$$

$$2x - 3 = 0$$

$$x = 1.5$$

$$(2x^2 + 4x - 11) > 5$$
 or $-(2x^2 + 4x - 11) > 5$
 $2x^2 + 4x - 11 > 5$ or $2x^2 + 4x - 11 < -5$
 $2x^2 + 4x - 16 > 0$ or $2x^2 + 4x - 6 < 0$
 $(x + 4)(x - 2) > 0$ or $(x + 3)(x - 1) < 0$
 $x < -4$ or $x > 2$ or $-3 < x < 1$



- 9 i) Sketch the graph $y = |x^2 2x|$ indicating the intercepts and coordinates of the turning point. ii) In each of the following case, determine the number of solutions of the equation $|x^2 2x| = mx + c$ where 0 < c < 1, justify your answer.
 - a) m=0
 - b) m = -1
- i) Plot $y = x^2 2x$ first, then reflect portions of graph below x-axis on the x-axis.

$$y = x(x-2)$$

x-intercepts are at (0,0) and (2,0).

Since quadratic graph is symmetrical, turning point is at x = 1.

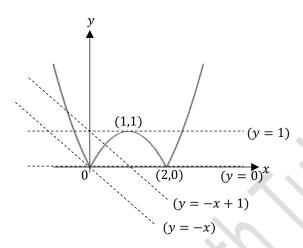
At
$$x = 1$$
, $y = 1(1 - 2) = -1$

Turning point is (1, -1)

Sub x = 0,

y = 0

y-intercept is (0,0).



- iia) There are 4 solutions since the graphs cut at 4 points.
- iib) There are 2 solutions since the graphs cut at 2 points.

- i) Sketch the graph of y = |3x 2| for -1 < x < 2.
- ii) State the corresponding range of y.
- iii) Find the range of values of c for which |3x 2| = 3x + c has only one solution for -1 < x < 3.

