(5) Modulus and Graph of Logarithms/Exponentials Functions

1. Sketch the graph $y=e^{x+2}$. State the equation of a straight line that can be drawn to solve the equation $x+2=\ln (x+1)-\ln 2$.
2. The figure shows part of the graph of $y=|a x-4|+b$ where $C(1,-2)$ is the minimum point of the graph.
i) State the value of b
ii) Find the value of a
iii) Find the coordinates of A, B and D.
iv) Write down the range of values of x for which y is negative.

3. The diagram show part of the graph of $y=a-|b x+c|$ where $b>0$. Given that it passes through the points $B(2,3)$ and $C(5,-6)$,
i) Find the values of a, b and c
ii) Find the x-intercepts and the y-intercept of the graph.

4. Sketch the graph $y=3 \ln (x+1)$. On the same graph, add a suitable straight line which will help solve the equation $(x+1) e^{\frac{1}{3} x+1}=e^{2}$. State the equation of the straight line.
5. Solve the equation $|-3 x+21|=8 x+|x-7|$
6. i) On the same diagram, sketch the graphs of $y=|2 x|$ and $y=|x+3|$.
ii) State the number of solutions of the equation for $|2 x|=|x+3|$.
iii) Find the coordinates of the intersection points of the 2 graphs.
iv) Hence, state the solution of $|2 x|>|x+3|$.
7. a) Solve the equation $|x-2|=2-4 x$
b) The diagram shows part of the graph of $y=4-|2 x-3|$. Find the coordinates of A, B and C.

8. $\left|2 x^{2}+4 x-11\right|>5$
9. i) Sketch the graph $y=\left|x^{2}-2 x\right|$ indicating the intercepts and coordinates of the turning point.
ii) In each of the following case, determine the number of solutions of the equation $\left|x^{2}-2 x\right|=$ $m x+c$ where $0<c<1$, justify your answer.
a) $m=0$
b) $m=-1$
10. i) Sketch the graph of $y=|3 x-2|$ for $-1<x<2$.
ii) State the corresponding range of y.
iii) Find the range of values of c for which $|3 x-2|=3 x+c$ has only one solution for $-1<$ $x<3$.
